Exfoliation of Layered Na-Ion Anode Material Na2Ti3O7 for Enhanced Capacity and Cyclability
نویسندگان
چکیده
منابع مشابه
High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries.
A Sb/C nanocomposite was synthesized and found to deliver a reversible 3 Na storage capacity of 610 mA h g(-1), a strong rate capability at a very high current of 2000 mA g(-1) and a long-term cycling stability with 94% capacity retention over 100 cycles, offering practical feasibility as a high capacity and cycling-stable anode for room temperature Na-ion batteries.
متن کاملInitial Discharge Capacity of Manganese Cobaltite as Anode Material for Lithium Ion Batteries
Nanostructured manganese cobalt oxide spinel (MnCo2O4) are prepared by co-precipitation method and calcined at 650 and 750°C. Morphological studies show that by increasing the calcination temperature from 650 to 750°C, morphology of the particles changes from quasi-plate to polyhedral. The MnCo2O4 calcined at 650°C could deliver an initial discharge capacity of 1438 mAh g-1 under current densit...
متن کاملNaTiO2: a layered anode material for sodium-ion batteries
Lithium-ion batteries are currently the energy storage technology of choice in portable electronic devices and electric vehicles. In recent years, sodium-ion batteries have been actively restudied as a promising alternative because of the abundance of sodium resources and the high capacity cathodes available. But as graphitic carbon can not be used as anode material, as it is in lithium batteri...
متن کاملUnderstanding Na₂Ti₃O₇ as an ultra-low voltage anode material for a Na-ion battery.
An in-depth understanding of Na2Ti3O7 as a Na-ion battery anode is reported. The battery performance is enhanced by carbon coating, due to increased electronic conductivity and reduced solid electrolyte interphase formation. Ti(4+) reduction upon discharge is demonstrated using in situ XAS. The self-relaxation behaviour of the fully intercalated phase is revealed.
متن کاملHigh-rate capability and superior cyclability of flower-like Sb2S3 anode for high capacity sodium-ion batteries
Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chemistry of Materials
سال: 2018
ISSN: 0897-4756,1520-5002
DOI: 10.1021/acs.chemmater.7b03753